Home Older Mathematica Items

Scientific Arts

## •Functions and parameters contained in this package:

In[1]:=

Out[1]//DisplayForm=

### •Package functions and their basic documentation along with simple examples

Here is the earth radius (in thousands of kilometers) as a function of latitude (in degrees):

In[2]:=

#### •ECIToECRCoordinates

Usage message for ECIToECRCoordinates

#### •ECIToTCCCoordinates

Usage message for ECIToTCCCoordinates

#### •ECRToECICoordinates

Usage message for ECRToECICoordinates

#### •ECRToGeodeticCoordinates

Usage message for ECRToGeodeticCoordinates

#### •ECRToTCCCoordinates

Usage message for ECRToTCCCoordinates

#### •ElevationAngleGeometricMaximum

Usage message for ElevationAngleGeometricMaximum

#### •ElevationAngleGeometric

The elevation angle is negative here because the target is close to the geometrical horizon of the transmitter-target system:

In[3]:=

Out[3]=

Of course closer in the elevation angle is positive

In[4]:=

Out[4]=

In[5]:=

Out[5]=

In[6]:=

Out[6]=

In[7]:=

Out[7]=

#### •GeodeticToECRCoordinates

Usage message for GeodeticToECRCoordinates

In[8]:=

Out[8]=

#### •HorizonAngleGeometricMaximum

Usage message for HorizonAngleGeometricMaximum

#### •HorizonAngleGeometric

Usage message for HorizonAngleGeometric

In[9]:=

Out[9]=

#### •HorizonDistanceCalculator

Usage message for HorizonDistanceCalculator

In[10]:=

Out[10]=

#### •HorizonDistance

The distance (in Kilometers) to the geometrical horizon for a 30 meter high radar (using a 4/3 effective earth radius factior):

In[11]:=

Out[11]=

The distance (in Kilometers) to the geometrical horizon for a 30 meter high radar (using a 4/3 effective earth radius factior) viewing a target flying at 20 meters above the ground:

In[12]:=

Out[12]=

The distance (in Kilometers) to the geometrical horizon for a 30 meter high radar (using a effective earth radius factior of unity) viewing a target flying at 10 kilometers above the ground subject to the constraint that the view must be more than 1 degree above the horizon:

In[13]:=

Out[13]=

Compare this to the case just at the geometrical horizon:

In[14]:=

Out[14]=

In[15]:=

Out[15]=

In[16]:=

Out[16]=

In[17]:=

Out[17]=

In[18]:=

Out[18]=

In[19]:=

Out[19]=

In[20]:=

Out[20]=

#### •RAEToTCCCoordinates

Usage message for RAEToTCCCoordinates

#### •RotXInverse

Usage message for RotXInverse

#### •RotX

Usage message for RotX

#### •RotYInverse

Usage message for RotYInverse

#### •RotY

Usage message for RotY

#### •RotZInverse

Usage message for RotZInverse

#### •RotZ

Usage message for RotZ

In[21]:=

Out[21]=

In[22]:=

Out[22]=

#### •SpecularDirectPathDifference

In[23]:=

Out[23]=

In[24]:=

Out[24]=

Here is a distance where the difference between a direct and reflected ray will be 180° out of phase, leading to destructive interference.

In[25]:=

Out[25]=

In[26]:=

In[27]:=

Out[27]=

In[28]:=

Out[28]=

#### •TCCToECICoordinates

Usage message for TCCToECICoordinates

#### •TCCToECRCoordinates

Usage message for TCCToECRCoordinates

#### •TCCToRAECoordinates

Usage message for TCCToRAECoordinates

 For further information on our services send email to info@scientificarts.com . Contents of this web site Copyright © 1999-2011, Scientific Arts, LLC.
 d