CrossSections
•Functions and parameters contained in
this package:
In[1]:=
![RadarPackageFunctions[CrossSections, 2]](HTMLFiles/index_1.gif)
Out[1]//DisplayForm=
![[Graphics:HTMLFiles/index_2.gif]](HTMLFiles/index_2.gif)
•Package functions and their basic documentation
along with simple examples
•CircularConductingCylinderRCS
![[Graphics:HTMLFiles/index_3.gif]](HTMLFiles/index_3.gif)
In[2]:=
![CircularConductingCylinderRCS[ν, l, a, θ]](HTMLFiles/index_4.gif)
Out[2]=
![(149896229 a Sec[θ] Sin[(l π ν Cos[θ])/149896229]^2 Tan[θ])/(π ν)](HTMLFiles/index_5.gif)
•CrossSections
![[Graphics:HTMLFiles/index_6.gif]](HTMLFiles/index_6.gif)
•EllipsoidRCS
![[Graphics:HTMLFiles/index_7.gif]](HTMLFiles/index_7.gif)
In[3]:=
![EllipsoidRCS[a, b, c, θ, φ]](HTMLFiles/index_8.gif)
Out[3]=
![(a^2 b^2 c^2 π)/(c^2 Cos[θ]^2 + a^2 Cos[φ]^2 Sin[θ]^2 + b^2 Sin[θ]^2 Sin[φ]^2)^2](HTMLFiles/index_9.gif)
Prolate or oblate ellipsoid:
In[4]:=
![EllipsoidRCS[a, a, b, θ, φ] // Simplify](HTMLFiles/index_10.gif)
Out[4]=
![(4 a^4 b^2 π)/(a^2 + b^2 + (-a^2 + b^2) Cos[2 θ])^2](HTMLFiles/index_11.gif)
•FlatConductingCircularPlateRCS
![[Graphics:HTMLFiles/index_12.gif]](HTMLFiles/index_12.gif)
In[5]:=
![FlatConductingCircularPlateRCS[ν, a, θ]](HTMLFiles/index_13.gif)
Out[5]=
![a^2 π BesselJ[1, (2 a π ν Sin[θ])/149896229]^2 Cot[θ]^2](HTMLFiles/index_14.gif)
•MieBackscatterSumScaled
![[Graphics:HTMLFiles/index_15.gif]](HTMLFiles/index_15.gif)
For infinite conductivity there is no explicit dependence
on the frequency.
In[6]:=
![D[MieBackscatterSumScaled[ω, ρ, ∞, 3], ω]](HTMLFiles/index_16.gif)
Out[6]=

In[7]:=
![tem = TodB[MieBackscatterSumScaled[ ρ, 10]] ;](HTMLFiles/index_18.gif)
With 10 terms in the Mie Series:
In[8]:=
![Plot[Evaluate[TodB[MieBackscatterSumScaled[ ρ, 10]]], {ρ, .1, 10}, Frame -> True, FrameLabel -> {ρ, "Cross Section"}, PlotRange -> All] ;](HTMLFiles/index_19.gif)
![[Graphics:HTMLFiles/index_20.gif]](HTMLFiles/index_20.gif)
With 20 terms in the Mie Series:
In[9]:=
![Plot[Evaluate[TodB[MieBackscatterSumScaled[ ρ, 20]]], {ρ, .1, 10}, Frame -> True, FrameLabel -> {ρ, "Cross Section"}, PlotRange -> All] ;](HTMLFiles/index_21.gif)
![[Graphics:HTMLFiles/index_22.gif]](HTMLFiles/index_22.gif)
Here is a comparison of the scaled backscatter cross
section of a sphere with infinite conductivity with that of a sphere
of low conductivity (the dielectric properties in the latter case
are those of pure water at room temperature and at a frequency of
1 GHz)
This is a list of the dielectric constant and
conductivity of pure water:
In[10]:=
![waterEMProperties = PureWaterModelEMProperties[GHz, FarenheitToKelvin[65]]](HTMLFiles/index_23.gif)
Out[10]=

Here is log-log plot of these two cases, the
pure water curve is given in red:
In[11]:=
![nterms = 7 ; <br /> LogLogPlot[Evaluate[{MieBackscatterSumScaled[2 π ρ, nterms], <br ... Axes -> False, PlotStyle -> {RGBColor[0, 0, 0], RGBColor[1, 0, 0]}, PlotRange -> All] ;](HTMLFiles/index_25.gif)
![[Graphics:HTMLFiles/index_26.gif]](HTMLFiles/index_26.gif)
•MieBackscatterSum
![[Graphics:HTMLFiles/index_27.gif]](HTMLFiles/index_27.gif)
In[13]:=
![MieBackscatterSum[3 GHz, 1, {ϵ, ∞}, 1]](HTMLFiles/index_28.gif)
Out[13]=
![(22468879468420441 Abs[BesselJ[3/2, (3000000000 π)/149896229]/(BesselJ[3/2, (3000000000 & ... i π BesselY[5/2, (3000000000 π)/149896229])/149896229)]^2)/(1000000000000000000 π)](HTMLFiles/index_29.gif)
•ThinConductingStraightWireRCS
![[Graphics:HTMLFiles/index_30.gif]](HTMLFiles/index_30.gif)
In[14]:=
![ThinConductingStraightWireRCS[ν, l, a, θ, φ]](HTMLFiles/index_31.gif)
Out[14]=
![(l^2 π Cos[φ]^4 Sin[θ]^2 Sin[(l π ν Cos[θ])/149896229]^2)/((2 - ... [θ])/299792458)^2 (π^2/4 + Log[(a e^EulerGamma π ν Sin[θ])/299792458]^2))](HTMLFiles/index_32.gif)
|