Antennas
•Functions and parameters contained in
this package:
In[29]:=
![RadarPackageFunctions[Antennas, 2]](HTMLFiles/index_1.gif)
Out[29]//DisplayForm=
![[Graphics:HTMLFiles/index_2.gif]](HTMLFiles/index_2.gif)
•Package functions and their basic documentation
along with simple examples
•AntennaPattern
![[Graphics:HTMLFiles/index_3.gif]](HTMLFiles/index_3.gif)
In[1]:=
![Options[AntennaPattern]](HTMLFiles/index_4.gif)
Out[1]=

•Antennas
![[Graphics:HTMLFiles/index_6.gif]](HTMLFiles/index_6.gif)
•AntennaTemperature
![[Graphics:HTMLFiles/index_7.gif]](HTMLFiles/index_7.gif)
In[2]:=
![AntennaTemperature[T _ T, T _ TL, L]](HTMLFiles/index_8.gif)
Out[2]=

•ApertureExcitation
![[Graphics:HTMLFiles/index_10.gif]](HTMLFiles/index_10.gif)
In[3]:=
![ApertureExcitation[BaylissLineSource[r, nbar, d, λ, θ], x]](HTMLFiles/index_11.gif)
Out[3]=
![Underoverscript[∑, K = 0, arg3] BaylissLineB[r, K, nbar] Sin[((2 π x) (K + 1/2))/d]](HTMLFiles/index_12.gif)
In[4]:=
![ApertureExcitation[BaylissLineSource[FromdB[30], 5, d], x]](HTMLFiles/index_13.gif)
Out[4]=
![0.26843876636826486` Sin[(π x)/d] + 0.1621540136819705` Sin[(3 π x)/d] - 0.008838209 ... 60; x)/d] + 0.002913038090281392` Sin[(7 π x)/d] - 0.0007027248993531724` Sin[(9 π x)/d]](HTMLFiles/index_14.gif)
In[5]:=
![ae = ApertureExcitation[BaylissLineSource[FromdB[30], 5, 1], x]](HTMLFiles/index_15.gif)
Out[5]=
![0.26843876636826486` Sin[π x] + 0.1621540136819705` Sin[3 π x] - 0.00883820909872190 ... ` Sin[5 π x] + 0.002913038090281392` Sin[7 π x] - 0.0007027248993531724` Sin[9 π x]](HTMLFiles/index_16.gif)
In[6]:=
![Plot[ae, {x, -1/2, 1}] ;](HTMLFiles/index_17.gif)
![[Graphics:HTMLFiles/index_18.gif]](HTMLFiles/index_18.gif)
•BaylissLinearArray
![[Graphics:HTMLFiles/index_19.gif]](HTMLFiles/index_19.gif)
In[7]:=
![AntennaPattern[BaylissLinearArray[FromdB[25], 7, 16, λ/2, λ, θ, φ, α, β]]](HTMLFiles/index_20.gif)
Out[7]=
![e^(-15/2 i π (-Cos[β] Sin[α] + Cos[φ] Sin[θ])) (-0.1472672554650939` ... 52;])) + 0.1472672554650939` e^(15 i π (-Cos[β] Sin[α] + Cos[φ] Sin[θ])))](HTMLFiles/index_21.gif)
In[8]:=
![AntennaPattern[BaylissLinearArray[FromdB[25], 7, 16, λ/2, λ, θ]]](HTMLFiles/index_22.gif)
Out[8]=
![e^(-15/2 i π Sin[θ]) (-0.1472672554650939` - 0.1900317255314121` e^(i π Sin[ ... 0.1900317255314121` e^(14 i π Sin[θ]) + 0.1472672554650939` e^(15 i π Sin[θ]))](HTMLFiles/index_23.gif)
Here is the array pattern for a Bayliss linear phased
array:
In[9]:=
![af = TodB[Abs[AntennaPattern[BaylissLinearArray[FromdB[25], 7, 16, λ/2, λ, θ], ... #952;, 0, π/2}, PlotPoints -> 40, Frame -> True, PlotStyle -> RGBColor[.7, 0, 0]] ;](HTMLFiles/index_24.gif)
![[Graphics:HTMLFiles/index_25.gif]](HTMLFiles/index_25.gif)
Here is the array pattern for the corresponding Bayliss
continuoous line source:
In[11]:=
![aflinesource = TodB[Abs[AntennaPattern[BaylissLineSource[FromdB[25], 7, 8 λ, λ, _ ... ; afPlotLineSource = Plot[afline, {θ, 0, π/2}, PlotPoints -> 40, Frame -> True] ;](HTMLFiles/index_26.gif)
![[Graphics:HTMLFiles/index_27.gif]](HTMLFiles/index_27.gif)
In[13]:=
![Show[afPlotArray, afPlotLineSource] ;](HTMLFiles/index_28.gif)
![[Graphics:HTMLFiles/index_29.gif]](HTMLFiles/index_29.gif)
•BaylissLineB
In[14]:=
![UsageMessageCell[BaylissLineB, UsagesOnly -> True]](HTMLFiles/index_30.gif)
![[Graphics:HTMLFiles/index_31.gif]](HTMLFiles/index_31.gif)
Usage message for BaylissLineB
•BaylissLineA
![[Graphics:HTMLFiles/index_32.gif]](HTMLFiles/index_32.gif)
Usage message for BaylissLineA
•BaylissLineSource
![[Graphics:HTMLFiles/index_33.gif]](HTMLFiles/index_33.gif)
This is the general analytic expression:
In[15]:=
![AntennaPattern[BaylissLineSource[r, nbar, d, λ, θ]]](HTMLFiles/index_34.gif)
Out[15]=
![((-1)^(-nbar) d (1/λ^2)^(-nbar) (-λ^2)^(-nbar) Gamma[1/2 + nbar]^2 (Underoverscript[ ... ;])/(λ Gamma[1/2 + nbar - (d Sin[θ])/λ] Gamma[1/2 + nbar + (d Sin[θ])/λ])](HTMLFiles/index_35.gif)
Numerical results are generated automatically when
called for:
In[16]:=
![af = TodB[Abs[AntennaPattern[BaylissLineSource[FromdB[25], 7, 8 λ, λ, θ], Normalized -> True]]^2] ; Plot[af, {θ, 0, π/2}, PlotPoints -> 40, Frame -> True] ;](HTMLFiles/index_36.gif)
![[Graphics:HTMLFiles/index_37.gif]](HTMLFiles/index_37.gif)
•BaylissLineU0
![[Graphics:HTMLFiles/index_38.gif]](HTMLFiles/index_38.gif)
•BaylissLineZ
![[Graphics:HTMLFiles/index_39.gif]](HTMLFiles/index_39.gif)
Usage message for BaylissLineZ
•BinomialLinearArray
![[Graphics:HTMLFiles/index_40.gif]](HTMLFiles/index_40.gif)
There is a general expression for the array factor
of the binomial array:
In[18]:=
![AntennaPattern[BinomialLinearArray[n, d, λ, θ, φ, α, β]]](HTMLFiles/index_41.gif)
Out[18]=
![e^(i d (1 - n) π (-Cos[β] Sin[α] + Cos[φ] Sin[θ]))/λ (-e^(2 i d ... ]))/λ + (1 + e^(2 i d π (-Cos[β] Sin[α] + Cos[φ] Sin[θ]))/λ)^n)](HTMLFiles/index_42.gif)
For particular values of n this expands:
In[19]:=
![AntennaPattern[BinomialLinearArray[8, λ/2, λ, θ]]](HTMLFiles/index_43.gif)
Out[19]=
![e^(-7/2 i π Sin[θ]) (-e^(8 i π Sin[θ]) + (1 + e^(i π Sin[θ]))^8)](HTMLFiles/index_44.gif)
Here is a normalized version:
In[20]:=
![AntennaPattern[BinomialLinearArray[8, λ/2, λ, θ], Normalized -> True]](HTMLFiles/index_45.gif)
Out[20]=
![1/255 e^(-7/2 i π Sin[θ]) (-e^(8 i π Sin[θ]) + (1 + e^(i π Sin[θ]))^8)](HTMLFiles/index_46.gif)
This is an example of a paremetric plot as a functoin
of angle of the array pattern (power in dB) normalized to 0 dB at
maximum:
In[21]:=
![PolarAntennaPlot[AntennaPattern[BinomialLinearArray[8, λ/2, λ, θ], Normalized -> True], {θ, -π, π}, PlotPoints -> 50] ;](HTMLFiles/index_47.gif)
![[Graphics:HTMLFiles/index_48.gif]](HTMLFiles/index_48.gif)
Here is the same but with a different interelement
spacing:
In[22]:=
![PolarAntennaPlot[AntennaPattern[BinomialLinearArray[8, 3 λ/4, λ, θ], Normalized -> True], {θ, -π, π}, PlotPoints -> 50] ;](HTMLFiles/index_49.gif)
![[Graphics:HTMLFiles/index_50.gif]](HTMLFiles/index_50.gif)
•BinomialLinearArray
![[Graphics:HTMLFiles/index_51.gif]](HTMLFiles/index_51.gif)
Usage message for BinomialLinearArray
•DolphChebyshevLinearArray
![[Graphics:HTMLFiles/index_52.gif]](HTMLFiles/index_52.gif)
Usage message for DolphChebyshevLinearArray
•DolphChebyshevLinearArray
![[Graphics:HTMLFiles/index_53.gif]](HTMLFiles/index_53.gif)
In[23]:=
![AntennaPattern[DolphChebyshevLinearArray[r, n, d, λ, θ, φ, α, β], Normalized -> True]](HTMLFiles/index_54.gif)
Out[23]=
![ChebyshevT[-1 + n, Cos[(d π (-Cos[β] Sin[α] + Cos[φ] Sin[θ]))/λ] Cosh[ArcCosh[r]/(-1 + n)]]/ChebyshevT[-1 + n, Cosh[ArcCosh[r]/(-1 + n)]]](HTMLFiles/index_55.gif)
An 8 element Dolph-Chenyshev array with sidelobes
10 dB below main beam power level:
In[24]:=
![PolarAntennaPlot[AntennaPattern[DolphChebyshevLinearArray[FromdB[10/2], 8, λ/2, λ, θ], Normalized -> True], {θ, 0, 2 π}] ;](HTMLFiles/index_56.gif)
![[Graphics:HTMLFiles/index_57.gif]](HTMLFiles/index_57.gif)
Similar to the above but steered -30° off of boresight:
In[25]:=
![PolarAntennaPlot[AntennaPattern[DolphChebyshevLinearArray[FromdB[10/2], 8, λ/2, λ, θ, 0, -π/6], Normalized -> True], {θ, 0, 2 π}] ;](HTMLFiles/index_58.gif)
![[Graphics:HTMLFiles/index_59.gif]](HTMLFiles/index_59.gif)
•DolphTschebyscheffLinearArray
![[Graphics:HTMLFiles/index_60.gif]](HTMLFiles/index_60.gif)
Usage message for DolphTschebyscheffLinearArray
•EffectiveSystemTemperature
![[Graphics:HTMLFiles/index_61.gif]](HTMLFiles/index_61.gif)
In[26]:=
![EffectiveSystemTemperature[t _ a, {t _ 1, t _ 2, t _ 3, t _ 4}, {g _ 1, g _ 2, g _ 3}]](HTMLFiles/index_62.gif)
Out[26]=

•ExplicitPhase
![[Graphics:HTMLFiles/index_64.gif]](HTMLFiles/index_64.gif)
•GainFactor
![[Graphics:HTMLFiles/index_65.gif]](HTMLFiles/index_65.gif)
•GaussianBeam
![[Graphics:HTMLFiles/index_66.gif]](HTMLFiles/index_66.gif)
In[27]:=
![AntennaPattern[GaussianBeam[θbw, θ, φ, α, β]]](HTMLFiles/index_67.gif)
Out[27]=
![2^(-1/2 Csc[θbw]^2 (-Cos[β] Sin[α] + Cos[φ] Sin[θ])^2)](HTMLFiles/index_68.gif)
In[28]:=
![AntennaPattern[GaussianBeam[θbw, θ]]](HTMLFiles/index_69.gif)
Out[28]=
![2^(-1/2 Csc[θbw]^2 Sin[θ]^2)](HTMLFiles/index_70.gif)
In[29]:=
![AntennaPattern[GaussianBeam[θbw, θ, ExplicitPhase -> Exp[I γ], GainFactor -> g]]](HTMLFiles/index_71.gif)
Out[29]=
![2^(-1/2 Csc[θbw]^2 Sin[θ]^2) e^(i γ) g](HTMLFiles/index_72.gif)
In[30]:=
![PolarAntennaPlot[AntennaPattern[GaussianBeam[π/20, θ]], {θ, -π, π}] ;](HTMLFiles/index_73.gif)
![[Graphics:HTMLFiles/index_74.gif]](HTMLFiles/index_74.gif)
•GeneralLinearArray
![[Graphics:HTMLFiles/index_75.gif]](HTMLFiles/index_75.gif)
With the choice of function as simply unity ( expressed
as a pure function by
we get the uniform array that is examined below under UniformLinearArray:
In[31]:=
![glaAntennaPattern = AntennaPattern[GeneralLinearArray[1 &, n, d, λ, θ, 0, 0, 0]]](HTMLFiles/index_77.gif)
Out[31]=
![(e^(i d (1 - n) π Sin[θ])/λ (-1 + e^(2 i d n π Sin[θ])/λ))/(-1 + e^(2 i d π Sin[θ])/λ)](HTMLFiles/index_78.gif)
Bringing this into a (perhaps) more familiar form:
In[32]:=
![FullSimplify[ExpToTrig[glaAntennaPattern]]](HTMLFiles/index_79.gif)
Out[32]=
![Csc[(d π Sin[θ])/λ] Sin[(d n π Sin[θ])/λ]](HTMLFiles/index_80.gif)
The first argument of GeneralLinearArray can also
be a list of array weights. This corresponds to an array
with 5 equally weighted elements:
In[33]:=
![uniform5 = AntennaPattern[GeneralLinearArray[Table[1, {5}], 5, d, λ, θ]]](HTMLFiles/index_81.gif)
Out[33]=
![1 + e^(-(2 i d π Sin[θ])/λ) + e^(2 i d π Sin[θ])/λ + e^(-(4 i d π Sin[θ])/λ) + e^(4 i d π Sin[θ])/λ](HTMLFiles/index_82.gif)
In[34]:=
![FullSimplify[uniform5 - glaAntennaPattern /. n -> 5]](HTMLFiles/index_83.gif)
Out[34]=

Here is the array factor for weights that vary according
to the form (give as a pure function) :
In[35]:=
![AntennaPattern[GeneralLinearArray[Cos[(π #)/n] &, n, d, λ, θ, 0, 0, 0]]](HTMLFiles/index_86.gif)
Out[35]=
![(i e^((i d (3 - n) π Sin[θ])/λ + (2 i d n π Sin[θ])/λ) (-1 + e^( ... e^(2 i d π Sin[θ])/λ) (-1 + e^((i π)/n + (2 i d π Sin[θ])/λ)))](HTMLFiles/index_87.gif)
Here is its normalized form for n=6 with an inter
element spacing d=λ/2 steered to an angle of 45 degrees:
In[36]:=
![cosAntennaPattern6 = AntennaPattern[GeneralLinearArray[Cos[(π #)/6] &, 6, λ/2, λ, θ, 0, π/4, 0], Normalized -> True]](HTMLFiles/index_88.gif)
Out[36]=
![((7 - 4 3^(1/2))^(1/2) e^(-3/2 i π (-1/2^(1/2) + Sin[θ])) (1 + e^(6 i π (-1/2^( ... - 2 3^(1/2) e^(i π (-1/2^(1/2) + Sin[θ])) + 2 e^(2 i π (-1/2^(1/2) + Sin[θ])))](HTMLFiles/index_89.gif)
In[37]:=
![PolarAntennaPlot[cosAntennaPattern6, {θ, -π, π}] ;](HTMLFiles/index_90.gif)
![[Graphics:HTMLFiles/index_91.gif]](HTMLFiles/index_91.gif)
As another example we consider an asymmetric distribution
of array weights (this will lead to a monopulse type beam pattern):
In[38]:=
![Clear[assymetricTriangle] ; assymetricTriangle[n_] := If[# >= 0, 1 - #/n, -#/n - 1] &](HTMLFiles/index_92.gif)
In[40]:=
![Plot[assymetricTriangle[5][x], {x, -5, 5}] ;](HTMLFiles/index_93.gif)
![[Graphics:HTMLFiles/index_94.gif]](HTMLFiles/index_94.gif)
Here is an example for a 6-element
array:
In[41]:=

In[42]:=
![AntennaPattern[GeneralLinearArray[assymetricTriangle[numberOfArrayElements], numberOfArrayElements, λ/2, λ, θ, 0, π/4, 0]]](HTMLFiles/index_97.gif)
Out[42]=
![1/6 e^(-5/2 i π (-1/2^(1/2) + Sin[θ])) (-3 - 4 e^(i π (-1/2^(1/2) + Sin[θ] ... 2;])) + 5 e^(4 i π (-1/2^(1/2) + Sin[θ])) + 4 e^(5 i π (-1/2^(1/2) + Sin[θ])))](HTMLFiles/index_98.gif)
Since this array will have a two-lobed (monopulse)
main beam, we need to determine the location of a maximum to normalize. To
do this we use a function from the Mathematica standard add-on
package NumericalMath`NMinimize`, NMaximize.
First load the package:
In[43]:=
![Needs["NumericalMath`NMinimize`"]](HTMLFiles/index_99.gif)
In[44]:=

![NMaximize[{obj, cons}, vars] searches for a global maximum of the function obj subject to the constraints cons, with variables vars.](HTMLFiles/index_101.gif)
![NMaximize[{obj, cons}, vars] searches for a global maximum of the function obj subject to the constraints cons, with variables vars.](HTMLFiles/index_102.gif)
Now find the position of a maximum for a 10 element
array:
In[45]:=
![NMaximize[{Abs[AntennaPattern[GeneralLinearArray[assymetrictriangle[10], 10, 1/2, 1, θ, 0, 0, 0], Normalized -> True]]}, θ]](HTMLFiles/index_103.gif)
Out[45]=
![NMaximize[{Abs[AntennaPattern[GeneralLinearArray[assymetrictriangle[10], 10, 1/2, 1, θ, 0, 0, 0], Normalized -> True]]}, θ]](HTMLFiles/index_104.gif)
This also shows us that the angle between the two
monopulse beams is (in degrees):
In[46]:=

Out[46]=

The slope of the pattern on boresight is also easily
determined via similar methods.
Finally plot the normalized result:
In[47]:=
![PolarAntennaPlot[AntennaPattern[GeneralLinearArray[assymetrictriangle[10], 10, λ/2, λ ... 797807027956, 0, 0, 0}], Normalized -> True], {θ, -π, π}, PlotPoints -> 50] ;](HTMLFiles/index_107.gif)
![[Graphics:HTMLFiles/index_108.gif]](HTMLFiles/index_108.gif)
The monopulse pattern in this broadside configuration
is clear.
•NormalizationPoint
![[Graphics:HTMLFiles/index_109.gif]](HTMLFiles/index_109.gif)
In[48]:=
![PackagesAndFunctionsWithOption[NormalizationPoint]](HTMLFiles/index_110.gif)
Out[48]//DisplayForm=
![[Graphics:HTMLFiles/index_111.gif]](HTMLFiles/index_111.gif)
•Normalized
![[Graphics:HTMLFiles/index_112.gif]](HTMLFiles/index_112.gif)
In[49]:=
![PackagesAndFunctionsWithOption[Normalized]](HTMLFiles/index_113.gif)
Out[49]//DisplayForm=
![[Graphics:HTMLFiles/index_114.gif]](HTMLFiles/index_114.gif)
•Overhang
![[Graphics:HTMLFiles/index_115.gif]](HTMLFiles/index_115.gif)
In[50]:=
![PackagesAndFunctionsWithOption[Overhang]](HTMLFiles/index_116.gif)
Out[50]//DisplayForm=
![[Graphics:HTMLFiles/index_117.gif]](HTMLFiles/index_117.gif)
•TaylorLinearArray
![[Graphics:HTMLFiles/index_118.gif]](HTMLFiles/index_118.gif)
In[51]:=
![AntennaPattern[TaylorLinearArray[FromdB[25], 2, 3, λ/2, λ, θ, φ, α, β]]](HTMLFiles/index_119.gif)
Out[51]=
![(e^(-i π (-Cos[β] Sin[α] + Cos[φ] Sin[θ])) ((4 - e^(i π (-Cos[](HTMLFiles/index_120.gif)
In[52]:=
![AntennaPattern[TaylorLinearArray[FromdB[25], 2, 3, λ/2, λ, θ]]](HTMLFiles/index_121.gif)
Out[52]=
![(e^(-i π Sin[θ]) ((4 - e^(i π Sin[θ]) + 4 e^(2 i π Sin[θ])) ` ... 952;])) ArcCosh[(5 Log[100000])/Log[10]]^2))/(4 (π^2 + 4 ArcCosh[(5 Log[100000])/Log[10]]^2))](HTMLFiles/index_122.gif)
In[53]:=
![AntennaPattern[TaylorLinearArray[FromdB[25], 2, 3, λ/2, λ, θ, Overhang -> 2 λ]]](HTMLFiles/index_123.gif)
Out[53]=
![(e^(-i π Sin[θ]) ((11 - 5 5^(1/2) - 4 e^(i π Sin[θ]) + (11 - 5 5^(1/2)) e^ ... 52;])) ArcCosh[(5 Log[100000])/Log[10]]^2))/(16 (π^2 + 4 ArcCosh[(5 Log[100000])/Log[10]]^2))](HTMLFiles/index_124.gif)
To avoid generating very large exact expressions we
use floating point values for the calculation:
In[54]:=
![AntennaPattern[TaylorLinearArray[NFromdB[25], 7, 16, λ/2, λ, θ, φ, α, β]]](HTMLFiles/index_125.gif)
Out[54]=
![e^(-15/2 i π (-Cos[β] Sin[α] + Cos[φ] Sin[θ])) (0.5104308569740004` ... 52;])) + 0.5104308569740004` e^(15 i π (-Cos[β] Sin[α] + Cos[φ] Sin[θ])))](HTMLFiles/index_126.gif)
In[55]:=
![AntennaPattern[TaylorLinearArray[NFromdB[25], 7, 16, λ/2, λ, θ]]](HTMLFiles/index_127.gif)
Out[55]=
![e^(-15/2 i π Sin[θ]) (0.5104308569740004` + 0.5871267773950055` e^(i π Sin[ ... 0.5871267773950055` e^(14 i π Sin[θ]) + 0.5104308569740004` e^(15 i π Sin[θ]))](HTMLFiles/index_128.gif)
In[56]:=
![afarray = TodB[Abs[AntennaPattern[TaylorLinearArray[NFromdB[40], 2, 16, λ/2, λ, _ ... #952;, 0, π/2}, PlotPoints -> 40, Frame -> True, PlotStyle -> RGBColor[.7, 0, 0]] ;](HTMLFiles/index_129.gif)
![[Graphics:HTMLFiles/index_130.gif]](HTMLFiles/index_130.gif)
In[58]:=
![aflinesource = TodB[Abs[AntennaPattern[TaylorLineSource[FromdB[40], 2, 8 λ, λ, θ ... otLineSource = Plot[aflinesource, {θ, 0, π/2}, PlotPoints -> 40, Frame -> True] ;](HTMLFiles/index_131.gif)
![[Graphics:HTMLFiles/index_132.gif]](HTMLFiles/index_132.gif)
In[60]:=
![Show[afPlotArray, afPlotLineSource] ;](HTMLFiles/index_133.gif)
![[Graphics:HTMLFiles/index_134.gif]](HTMLFiles/index_134.gif)
In[61]:=
![AntennaPattern[TaylorLinearArray[r, nbar, 4, d, λ, θ]]](HTMLFiles/index_135.gif)
Out[61]=
![e^(-(3 i d π Sin[θ])/λ) (1 + e^(2 i d π Sin[θ])/λ + e^(4 i d ... citationCoeff[r, nbar, K] Cos[(2 π (3 d + 1/2 (-3 d - λ) + λ/2) K)/(3 d + λ)])](HTMLFiles/index_136.gif)
•TaylorLineA
![[Graphics:HTMLFiles/index_137.gif]](HTMLFiles/index_137.gif)
Usage message for TaylorLineA
•TaylorLineExcitationCoeff
![[Graphics:HTMLFiles/index_138.gif]](HTMLFiles/index_138.gif)
Usage message for TaylorLineExcitationCoeff
•TaylorLineSource
![[Graphics:HTMLFiles/index_139.gif]](HTMLFiles/index_139.gif)
In[62]:=
![AntennaPattern[TaylorLineSource[r, nbar, L, λ, θ]]](HTMLFiles/index_140.gif)
Out[62]=
![(λ Csc[θ] (-1 + nbar) !^2 (Underoverscript[∏, K = 1, arg3] (1 - (L^2 Sin[θ ... chhammer[1 - (L Sin[θ])/λ, -1 + nbar] Pochhammer[1 + (L Sin[θ])/λ, -1 + nbar])](HTMLFiles/index_141.gif)
In[63]:=
![AntennaPattern[TaylorLineSource[r, 3, L, λ, θ]]](HTMLFiles/index_142.gif)
Out[63]=
![(4 λ Csc[θ] (1 - (L^2 (25/4 + ArcCosh[(10 Log[r])/Log[10]]^2/π^2) Sin[θ]^2 ... ])/λ) (2 - (L Sin[θ])/λ) (1 + (L Sin[θ])/λ) (2 + (L Sin[θ])/λ))](HTMLFiles/index_143.gif)
In[64]:=
![PowerExpand[ApertureExcitation[TaylorLineSource[FromdB[rdb], 3, L, λ], x]]](HTMLFiles/index_144.gif)
Out[64]=
![1 + 2 (2/3 (1 - (25/4 + ArcCosh[rdb]^2/π^2)/(9 (1/4 + ArcCosh[rdb]^2/π^2))) (1 - (25 ... 1 - (4 (25/4 + ArcCosh[rdb]^2/π^2))/(9 (9/4 + ArcCosh[rdb]^2/π^2))) Cos[(4 π x)/L])](HTMLFiles/index_145.gif)
•TaylorLineZ
![[Graphics:HTMLFiles/index_146.gif]](HTMLFiles/index_146.gif)
Usage message for TaylorLineZ
•TryZTransform
![[Graphics:HTMLFiles/index_147.gif]](HTMLFiles/index_147.gif)
Usage message for TryZTransform
•UniformLinearArray
![[Graphics:HTMLFiles/index_148.gif]](HTMLFiles/index_148.gif)
In[65]:=
![AntennaPattern[UniformLinearArray[n, d, λ, θ, φ, α, β]]](HTMLFiles/index_149.gif)
Out[65]=
![Csc[(d π (-Cos[β] Sin[α] + Cos[φ] Sin[θ]))/λ] Sin[(d n π (-Cos[β] Sin[α] + Cos[φ] Sin[θ]))/λ]](HTMLFiles/index_150.gif)
In[66]:=
![AntennaPattern[UniformLinearArray[n, d, λ, θ, 0, α, 0]]](HTMLFiles/index_151.gif)
Out[66]=
![Csc[(d π (-Sin[α] + Sin[θ]))/λ] Sin[(d n π (-Sin[α] + Sin[θ]))/λ]](HTMLFiles/index_152.gif)
In[67]:=
![AntennaPattern[UniformLinearArray[n, d, λ, θ, 0, α, 0], Normalized -> True]](HTMLFiles/index_153.gif)
Out[67]=
![(Csc[(d π (-Sin[α] + Sin[θ]))/λ] Sin[(d n π (-Sin[α] + Sin[θ]))/λ])/n](HTMLFiles/index_154.gif)
In terms of the frequency f:
In[68]:=
![AntennaPattern[UniformLinearArray[n, d, Wavelength[f], θ, φ, α, β]]](HTMLFiles/index_155.gif)
Out[68]=
![Csc[(d f π (-Cos[β] Sin[α] + Cos[φ] Sin[θ]))/299792458] Sin[(d f n π (-Cos[β] Sin[α] + Cos[φ] Sin[θ]))/299792458]](HTMLFiles/index_156.gif)
For steering angles α, β=0 and an elment
spacing of :
In[69]:=
![AntennaPattern[UniformLinearArray[n, λ/2, λ, θ], Normalized -> True]](HTMLFiles/index_158.gif)
Out[69]=
![(Csc[1/2 π Sin[θ]] Sin[1/2 n π Sin[θ]])/n](HTMLFiles/index_159.gif)
In[70]:=
![Plot[AntennaPattern[UniformLinearArray[12, λ/2, λ, θ], Normalized -> True], {θ, -π/2, π/2}, Frame -> True, PlotRange -> All] ;](HTMLFiles/index_160.gif)
![[Graphics:HTMLFiles/index_161.gif]](HTMLFiles/index_161.gif)
In[71]:=
![Plot[TodB[Abs[AntennaPattern[UniformLinearArray[15, λ/2, λ, θ], Normalized -> True]]], {θ, -π/2, π/2}, Frame -> True] ;](HTMLFiles/index_162.gif)
![[Graphics:HTMLFiles/index_163.gif]](HTMLFiles/index_163.gif)
Broadside:
In[72]:=
![PolarPlot[Abs[AntennaPattern[UniformLinearArray[6, λ/2, λ, θ], Normalized -> ... -1, 1}}, PlotStyle -> {AbsoluteThickness[2], Hue[.7]}, Frame -> True, ImageSize -> 300] ;](HTMLFiles/index_164.gif)
![[Graphics:HTMLFiles/index_165.gif]](HTMLFiles/index_165.gif)
Steered to a phase :
In[73]:=
![PolarPlot[Abs[AntennaPattern[UniformLinearArray[6, λ/2, λ, θ, 0, π/4], Nor ... -1, 1}}, PlotStyle -> {AbsoluteThickness[2], Hue[.7]}, Frame -> True, ImageSize -> 300] ;](HTMLFiles/index_167.gif)
![[Graphics:HTMLFiles/index_168.gif]](HTMLFiles/index_168.gif)
In[74]:=
![PolarAntennaPlot[AntennaPattern[UniformLinearArray[6, λ/2, λ, θ, 0, π/6], Normalized -> True], {θ, -π, π}] ;](HTMLFiles/index_169.gif)
![[Graphics:HTMLFiles/index_170.gif]](HTMLFiles/index_170.gif)
Compare broadside with endfire:
In[75]:=
![PolarAntennaPlot[{AntennaPattern[UniformLinearArray[6, λ/2, λ, θ], Normalized - ... s -> 30, PlotStyle -> {{AbsoluteThickness[2], Hue[.9]}, {AbsoluteThickness[2], Hue[.66]}}] ;](HTMLFiles/index_171.gif)
![[Graphics:HTMLFiles/index_172.gif]](HTMLFiles/index_172.gif)
|